The slope-intercept form of an equation of a line:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
b - y-intercept
We have the equations in the standard form. Convert to the slope-intercept form:
subtract 3x from both sides
![y=-3x-10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vb7binq0btf3qwlee3nql7kpixul30zp9s.png)
add x to both sides
divide both sides by 3
![y=(1)/(3)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tz80u29u7xg807xt9kdlmy0fme78l52gmp.png)
-----------------------------------------------------
We need only two points to plot a graph of each function.
![y=-3x-10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vb7binq0btf3qwlee3nql7kpixul30zp9s.png)
for x = 0 and for x = -3:
![y=-3(0)-10=0-10=-10\to(0,\ -10)\\\\y=-3(-3)-10=9-10=-1\to(-3,\ -1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fob9cn9p9zu43szjf1wnmp7a7kr7n25umy.png)
![y=(1)/(3)x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tz80u29u7xg807xt9kdlmy0fme78l52gmp.png)
for x = 0 and for x = -3:
![y=(1)/(3)(0)=0\to(0,\ 0)\\\\y=(1)/(3)(-3)=-1\to(-3,\ -1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uejngdxgjfj161l4ipvh0s54plue7p45fc.png)
Look at the picture.