Answer:
473 in²
Explanation:
We have four congruent triangles and a square in the base.
The formula of an area of a triangle:
![A_\triangle=(1)/(2)bh](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r7xnlfdm67rjarvji0z64kbdj56pl8rc8j.png)
b - base
h - height
The formyla of an area of a square:
![A_{\boxed{}}=a^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3j7j0qz41t8v6rlmsh3kpw0czp8ex8i1vg.png)
a - length of side
We have b = 11 in, h = 16 in and a = 11 in. Substitute:
![A_\triangle=(1)/(2)(11)(16)=(11)(8)=88\ in^2\\\\A_{\boxed{}}=11^2=121\ in^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2l6wo8xqmah702g924ee13powoou229kef.png)
The Surface Area :
![S.A.=4A_\triangle+A_{\boxed{}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p3ivkj843x9q8gbqev6xwtidn9g0btwzjk.png)
Substitute:
![S.A.=4(88)+121=352+121=473\ in^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qyv2whh2r44ofqm37v59mmfmxzith9b2lz.png)