98.7k views
10 votes
Pls help me I’m so stuck :(

Pls help me I’m so stuck :(-example-1

2 Answers

14 votes

Answer:

B

Explanation:

using Pythagoras' identity in the right triangle

the square on the hypotenuse is equal to the sum of the squares on the other 2 sides , then

(x + 1)² + (x + 3)² = (x + 5)² ← expand all factors using FOIL

x² + 2x + 1 + x² + 6x + 9 = x² + 10x + 25 , that is

2x² + 8x + 10 = x² + 10x + 25 ← subtract x² + 10x + 25 from both sides

x² - 2x - 15 = 0 ← in standard form

(x - 5)(x + 3) = 0 ← in factored form

equate each factor to zero and solve for x

x - 5 = 0 ⇒ x = 5

x + 3 = 0 ⇒ x = - 3

however, x > 0 , then x = 5

User Damin
by
8.1k points
7 votes

Answer:

B. 5

Explanation:


\sf{C = \sqrt{ A {}^(2) + B {}^(2) }}


\sf{x + 5 = \sqrt{ {(x + 3)}^(2) + {(x + 1)}^(2) }}


\sf{x + 5 = \sqrt{ {(x {}^(2) + 6x + 9)} + {(x {}^(2) + 2x + 1)}}}


\sf{x + 5 = \sqrt{ {(2x {}^(2) + 8x + 10)}}}


\sf{(x + 5) {}^(2) = { {2x {}^(2) + 8x + 10}}}


\sf{ {x}^(2) + 10x + 25= { {2x {}^(2) + 8x + 10}}}


\sf{0= { {2x {}^(2) \red{ { - x}^(2) } + 8x \red{ - 10x} + 10 \red{ - 25}}}}


\sf{0= x^(2) } - 2x { - 15}


\sf{0= x^(2) } - 2x { - 15}


\sf{0= (x - 5)(x + 3)}


\sf{x_(1) - 5 = 0 }


\sf{x_(1) = 0 + 5 }


\sf{x_(1) = \boxed{5 }}


\sf{x_(2) + 3 = 0 }


\sf{x_(2) = 0 - 3 }


\sf{x_(2) = \boxed{- 3 }}

Option B. 5

User Hoppeduppeanut
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories