Answer: 9.4
Step-by-step explanation:
Here the x-coordinates and y-coordinates have the inverse relation.
⇒
![x\propto(1)/(y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/swn5bhpy3g0zdp92ntww1v6g4m3g3pcdhg.png)
⇒
![x=(k)/(y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/on8qb4pu9166rur1h8lgx65kzse7j58tpo.png)
Where k is variation constant.
Since, point (9.4, 11) is from the inverse variation,
Therefore, this point must be satisfy the above condition,
That is,
![9.4=(k)/(11)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vw5os8pd4qx0p31yy1qrbw0210nyajujjn.png)
![k=103.4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xsc7j2egbo18u4b7kfjpskus3zv1abt0k2.png)
Thus, the relation between the coordinates is,
![x=(103.4)/(y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ku76bfshvgkbdceowf4tyooatfhqyllfyh.png)
Put x = 11, in the above function,
![11=(103.4)/(y)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p65vn1bouz0d3hsuclbvqzpsval3kf0uwl.png)
![y=(103.4)/(11)=9.4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3zki3lk5rq9ct1cszft11z761pvzjv59i7.png)