152k views
2 votes
Find the exact value of the expression. Do not use a calculator. If tan θ = 9, find the exact value of cot θ

1 Answer

6 votes


\bf tan(\theta )=9\implies tan(\theta )=\cfrac{\stackrel{opposite}{9}}{\stackrel{adjacent}{1}}\impliedby \textit{let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=√(a^2+b^2) \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}



\bf c=√(1^2+9^2)\implies c=√(82) \\\\[-0.35em] ~\dotfill\\\\ cos(\theta )=\cfrac{\stackrel{adjacent}{1}}{\stackrel{hypotenuse}{√(82)}}\implies \stackrel{\textit{rationalizing the denominator}}{cos(\theta )=\cfrac{1}{√(82)}\cdot \cfrac{√(82)}{√(82)}}\implies cos(\theta )=\cfrac{√(82)}{82}

User ThePrince
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories