165k views
18 votes
Solve for z square root of z^2-8- square root of 6z-17=0

2 Answers

7 votes

Answer:

Explanation:


√(z^2-8) -√(6z-17) =0\\√(z^2-8) =√(6z-17) \\6z > 17\\z > (17)/(6) \\z^2-8=0\\z^2 > 8\\so \\z < -√(8) \\or\\z > √(8) \\combining\\z > (17)/(6) \\again\\z^2-8=6z-17\\z^2-6z-8+17=0\\z^2-6z+9=0\\z^2-3z-3z+9=0\\z(z-3)-3(z-3)=0\\(z-3)(z-3)=0\\z=3

User Blthayer
by
8.2k points
3 votes


\large\displaystyle\text{$\begin{gathered}\sf \sqrt{z^(2)-8 }-√(6z-17)=0 \end{gathered}$}

Simplify the left side. Yes n is a positive integer greater than x and a is a real number or a factor, then
\bf{\sqrt[n]{a^(x) }=a^{(x)/(n) }. }


\large\displaystyle\text{$\begin{gathered}\sf \bf{(z^(2)-8)^{(1)/(2) }-√(6z-17)=0 } \end{gathered}$}

If n is a positive integer greater than x and a is a real number or a factor, then
\bf{\sqrt[n]{a^(x) }=a^{(x)/(n) }. }


\large\displaystyle\text{$\begin{gathered}\sf \bf{(z^(2)-8)^{(1)/(2) }-(6z-17)^{(1)/(2)} =0 } \end{gathered}$}

Draw each side of the equation. The solution is the x value of the point of intersection.


\red{\underbrace{\overbrace{\boxed{\boldsymbol{\sf{\green{z=3}}}}} \ \ \to \ \ \ Answer}}

{ Pisces04 }

User Jichi
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories