165k views
18 votes
Solve for z square root of z^2-8- square root of 6z-17=0

2 Answers

7 votes

Answer:

Explanation:


√(z^2-8) -√(6z-17) =0\\√(z^2-8) =√(6z-17) \\6z > 17\\z > (17)/(6) \\z^2-8=0\\z^2 > 8\\so \\z < -√(8) \\or\\z > √(8) \\combining\\z > (17)/(6) \\again\\z^2-8=6z-17\\z^2-6z-8+17=0\\z^2-6z+9=0\\z^2-3z-3z+9=0\\z(z-3)-3(z-3)=0\\(z-3)(z-3)=0\\z=3

User Blthayer
by
4.3k points
3 votes


\large\displaystyle\text{$\begin{gathered}\sf \sqrt{z^(2)-8 }-√(6z-17)=0 \end{gathered}$}

Simplify the left side. Yes n is a positive integer greater than x and a is a real number or a factor, then
\bf{\sqrt[n]{a^(x) }=a^{(x)/(n) }. }


\large\displaystyle\text{$\begin{gathered}\sf \bf{(z^(2)-8)^{(1)/(2) }-√(6z-17)=0 } \end{gathered}$}

If n is a positive integer greater than x and a is a real number or a factor, then
\bf{\sqrt[n]{a^(x) }=a^{(x)/(n) }. }


\large\displaystyle\text{$\begin{gathered}\sf \bf{(z^(2)-8)^{(1)/(2) }-(6z-17)^{(1)/(2)} =0 } \end{gathered}$}

Draw each side of the equation. The solution is the x value of the point of intersection.


\red{\underbrace{\overbrace{\boxed{\boldsymbol{\sf{\green{z=3}}}}} \ \ \to \ \ \ Answer}}

{ Pisces04 }

User Jichi
by
4.0k points