Answer:
the height will be maximum at 1.5
Explanation:
We have been given the function:
![h(t)=0.5\cdot sin(\pi t+(\pi)/(2))+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h5y7suqftr8spsp6qjh2lil7kt73rkjqet.png)
Height depends on
This will be maximum when value of its is 1
And value will be 1 when t=0.
So, substitute the value of t=0 in given function:
![h(0)=0.5\cdot sin(\pi 0+(\pi)/(2))+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dmzs39paghqvhti1613lhb6ukwauwbx9jy.png)
![h(0)=0.5\cdot sin((\pi)/(2))+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2f6jjd153kfdz5x2xtxdpiusxe2el5x8zi.png)
![\Rightarrow h(0)=0.5(1)+1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xna9m3icondwv4m72qpkut2qqntwa7f50r.png)
![h(t)=1.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/73fwese825bw117skt29yhaous4y2gezbu.png)
Hence, the height will be maximum at 1.5