119k views
17 votes
Please solve problem below​

Please solve problem below​-example-1

1 Answer

11 votes

(a) This is a Bernoulli equation:


(dy)/(dx) + (x)/(2(x^2+1)) y = x^3y^5


\implies y^(-5) (dy)/(dx) + (x)/(2(x^2+1)) y^(-4) = x^3

Substitute
z=y^(-4) and
(dz)/(dx) = -4y^(-5)(dy)/(dx) to transform the ODE to


-\frac14 (dz)/(dx) + (x)/(2(x^2+1)) z = x^3


\implies (dz)/(dx) - (2x)/(x^2+1) z = -4x^3

which is now linear in
z. Using the integrating factor method, the I.F. is


\mu = \displaystyle \exp\left(\int -(x)/(x^2+1) \, dx\right) = \exp\left(-\frac12 \ln(1+x^2)\right) = \frac1{√(1+x^2)}

Distribute
\mu on both sides to get a derivative of a product on the left side.


\frac1{√(1+x^2)} (dz)/(dx) - (2x)/((x^2+1)^(3/2)) z = -(4x^3)/(√(1+x^2))


\implies (d)/(dx) \left(\frac1{√(1+x^2)} z\right) = -(4x^3)/(√(1+x^2))

Integrate both sides (the integral on the right can be done by parts) to get


\displaystyle \frac1{√(1+x^2)} z = -4 \int (x^3)/(√(1+x^2)) \, dx = -\frac43 (x^2-2) √(1+x^2) + C

Solve for
z.


\displaystyle \frac1{√(1+x^2)} z = -\frac43 (x^2-2) √(1+x^2) + C


\implies z = -\frac43 (x^2-2) (1+x^2) + C √(1+x^2)

Solve for
y.


\frac1{y^4} = -\frac43 (x^2-2) (1+x^2) + C √(1+x^2)


\implies \boxed{y^4 = -\frac3{4(x^2-2) (1+x^2) + C √(1+x^2)}}

You could go on to solve explicitly for
y if you like.

(b) This is also a Bernoulli equation:


x^2y' + 2xy - y^3 = 0


\implies x^2 y^(-3) y' + 2xy^(-2) = 1

Substitute
z=y^(-2) and
z' = -2y^(-3)y'.


-\frac{x^2}2 z' + 2xz = 1


\implies z' - \frac4x z = -\frac2{x^2}

Now repeat the method from (a) to solve for
y.


\mu = \exp\left(-\displaystyle \int \frac4x \, dx\right) = \frac1{x^4}


\implies \frac1{x^4} z' - \frac4{x^5} z = -\frac2{x^6}


\implies \left(\frac1{x^4} z\right)' = -\frac2{x^6}


\displaystyle \implies \frac1{x^4} z = -2 \int (dx)/(x^6)


\implies \frac1{x^4} z = \frac2{5x^5} + C


\implies z = \frac2{5x} + Cx^4


\implies \frac1{y^2} = \frac2{5x} + Cx^4


\implies \boxed{y^2 = (5x)/(2 + Cx^5)}

User Pedro Borges
by
4.3k points