194k views
4 votes
If sin theta = -(sqrt(3))/2 and pi < theta < (3pi)/2, what are the values of cos theta and tan theta?

Answers:
cos theta = -(1)/2; tan theta = sqrt(3)
cos theta = -(1)/2; tan theta = -1
cos theta = (sqrt(3))/4; tan theta = -2
cos theta = 1/2; tan theta = sqrt(3)

User Franca
by
7.8k points

2 Answers

3 votes

For
\pi<\theta<\frac{3\pi}2, we expect
\cos\theta<0. Then recalling that
\sin^2\theta+\cos^2\theta=1, we have


\cos\theta=-√(1-\sin^2\theta)=-\frac12

Then by definition of tangent,


\tan\theta=(\sin\theta)/(\cos\theta)=\frac{-\frac{\sqrt3}2}{-\frac12}=\sqrt3

User Yildirim
by
8.1k points
2 votes

Answer:

Option 1 -


\cos\theta=-(1)/(2)


\tan\theta=\sqrt3

Explanation:

Given :
\sin\theta=-(\sqrt3)/(2) and
\pi < \theta < (3\pi)/(2)

To find : What are the values of
\cos \theta and
\tan \theta?

Solution :


\sin\theta=-(\sqrt3)/(2)

We know,
\cos\theta=√(1-sin^2\theta)

Substitute the value of
\sin\theta,


\cos\theta=\sqrt{1-(-(\sqrt3)/(2))^2}


\cos\theta=\sqrt{1-(3)/(4)}


\cos\theta=\sqrt{(4-3)/(4)}


\cos\theta=\sqrt{(1)/(4)}


\cos\theta=(1)/(2)

Since,
\pi < \theta < (3\pi)/(2) i.e. in third quadrant

We know,
\cos \theta in third quadrant is negative.

So,
\cos\theta=-(1)/(2)

Now,
\tan\theta=(\sin\theta)/(\cos\theta)

Substitute the value of
\sin\theta and
\cos\theta,


\tan\theta=(-(\sqrt3)/(2))/(-(1)/(2))


\tan\theta=(\sqrt3)/(2)* (2)/(1)}


\tan\theta=\sqrt3

We know,
\tan \theta in third quadrant is positive.

So,
\tan\theta=\sqrt3

Therefore, Option 1 is correct.

User Alfonso
by
8.2k points