Answer:
![x=49\degree,y=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a8cbb32t4vr0l3q5blv2t8t0saztofp80r.png)
Explanation:
Angle
corresponds to the complement of the
in the bigger triangle. See diagram in attachment.
This implies that,
![x=90-41=49\degree](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fag8wdx6a1fw4xe8oep2c8umd4wg8lpc1m.png)
Also since the triangles are similar, the sides are in the same proportion.
This implies that,
![(3y-8)/(15)=(4)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u7zu2v42ojns16b9regv3lo0wxwnhv5ckb.png)
We multiply both sides by 15 to get,
![3y-8=(4)/(6)* 15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fuojpo17nhy8a6q1zls7usq48ywya3zp4d.png)
![\Rightarrow 3y-8=(2)/(3)* 15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ekzzzk37bqmz8l32kuwot591qpfdcay7a2.png)
![\Rightarrow 3y-8=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lgero776pjir1hgprdwirix0wrnt5pun82.png)
![\Rightarrow 3y=10+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f6q4ovajrx9zzh0tz16ebyeplut36ka5eh.png)
![\Rightarrow 3y=18](https://img.qammunity.org/2020/formulas/mathematics/middle-school/amyiiptbab0f3eatiqs53nqrg5sm9jyrwq.png)
We divide through by 3 to get,
![y=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jhtozgvvhmtz2zmnl0yecx99jhilzs0e6k.png)
The correct answer is D