I've redrawn and labeled the given image. Angles
are supplementary to angles
; that is, for any angle
,
![x+x'=180^\circ](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wtiqq5jjdr05taol182mqnyhdu7athkynh.png)
It's also useful to know that for any convex
-gon, the sum of its interior angles is
![(n-2)*180^\circ](https://img.qammunity.org/2020/formulas/mathematics/middle-school/74xpwlcmrweca58yuu3h0n4ckqu8n1xvk2.png)
Notice that the angle supplementary to the one labeled
is congruent to the angle supplementary to the one labeled
; this means that
.
So we have
![\begin{cases}b=c\\a'+e+40^\circ+90^\circ=360^\circ\\a+b'+e'=180^\circ\\a'+b+\angle(1)+d+88^\circ=540^\circ\\b'+f'+\angle(1)'=180^\circ\\e+b+f+c+g=540^\circ\\c'+f'+h'=180^\circ\\\angle(1)+f+h+76^\circ+90^\circ=540^\circ\\g'+c'+\angle(2)'=180^\circ\\a+\angle(2)+c+h+58^\circ=540^\circ\end{cases}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ta11sbq2s91v13jdysq0tu30i7ze7fyzcv.png)
Solving the system will give you
![a=61^\circ,b=130^\circ,c=130^\circ,d=59^\circ,e=111^\circ,f=86^\circ,g=83^\circ,h=144^\circ](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8alferyera76t8fqyna4wjxe4v8wrwcw1j.png)