Answer:
Option D.
Explanation:
The vertices of given triangle are (2,-2), (5,-2) and (2,2).
Distance formula:
![D=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j1kb8i3dkf2cvyd6q9jwxe1a9tjqzfffka.png)
Using distance formula, the length of sides of given triangle are
![√(\left(5-2\right)^2+\left(-2-\left(-2\right)\right)^2)=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lzbynf2f4xkibyz5em6gto4mkueu86ntnf.png)
![√(\left(2-5\right)^2+\left(2-\left(-2\right)\right)^2)=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v9xf5vimwrw4rnx3ruqjtmiue46cemwyuh.png)
![√(\left(2-2\right)^2+\left(2-\left(-2\right)\right)^2)=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9alnt7wyzil5d2o8oxy009huj5p56ch1cf.png)
The sides of similar triangles are proportional.
Similarly, find the sides for each option.
The vertices of option D are
(2,-2), (8,-2), (2,6)
Using distance formula, the length of sides of this triangle are
![√(\left(8-2\right)^2+\left(-2-\left(-2\right)\right)^2)=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vh5zqx3brg2uu8p6f76o95xc4wpyyh7kyb.png)
![√(\left(2-8\right)^2+\left(6-\left(-2\right)\right)^2)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hezgdildpe656vs6kwqzon09cqb5yrhb42.png)
![√(\left(2-2\right)^2+\left(6-\left(-2\right)\right)^2)=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l9wyl0p6cjo3c7wpcbxj24f6ji8est2fyz.png)
It is noticed that
![(6)/(3)=(10)/(5)=(8)/(4)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d0e8u74k5zvgk2x2jbd8scgro7rejatbby.png)
Since the sides of given triangle and side of triangle in option D are proportional. Therefore, the correct option is D.