Answer:
-2y⁴ - 5y² + 42
Explanation:
![(y^2 + 6)(-2y^2 + 7)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3yjk5hcz1qw6c6jceebziszwr3ahefj0b2.png)
![\mathrm{Apply\:FOIL\:method}:\quad \left(a+b\right)\left(c+d\right)=ac+ad+bc+bd](https://img.qammunity.org/2023/formulas/mathematics/high-school/2een0lq4qa4vhc6hohwe9y0qrm95g6kb47.png)
Here First terms are
![y^2 \textrm{ and } -2y^2\\(y^2)(-2y^2) = -2y^4](https://img.qammunity.org/2023/formulas/mathematics/high-school/fxj4d15jq63tfr9qarnz6iyl8dqq113phv.png)
Outer terms are y² and 7 ==> (y²)(7) = 7y²
Inner terms are 6 and -2y² ==> 6(-2y²) = -12y²
Last terms are 6 and 7 ==> 6.7 = 42
So result is obtained by adding all these terms
-2y⁴ + 7y² - 12² + 42 ==> -2y⁴ - 5y² + 42