304,760 views
25 votes
25 votes
AC and BD bisect eachother prove AB || CD and BC ll AD

AC and BD bisect eachother prove AB || CD and BC ll AD-example-1
User Boio
by
2.9k points

1 Answer

27 votes
27 votes

1)
\overline{AC} and
\overline{BD} bisect each other (given)

2)
\overline{AE} \cong \overline{EC} (a bisector splits a segment into two congruent parts)

3)
\overline{BE} \cong \overline{ED} (a bisector splits a segment into two congruent parts)

4)
\angle BEA \cong \angle CED (vertical angles are congruent)

5)
\triangle BEA \cong \triangle DEC (SAS)

6)
\angle EBA \cong \angle EDC (CPCTC)

7)
\overline{AB} \parallel \overline{CD} (converse of alternate interior angles theorem)

8)
\angle DEA \cong \angle BEC (vertical angles are congruent)

9)
\triangle AED \cong \triangle BEC (SAS)

10)
\angle BCE \cong \angle EAD (CPCTC)

11)
\overline{BC} \parallel \overline{AD} (converse of alternate interior angles theorem)

User Clement JACOB
by
2.6k points