179k views
4 votes
Given: AC and FE bisect each other and Prove: ABCD is a parallelogram.

Given: AC and FE bisect each other and Prove: ABCD is a parallelogram.-example-1
User Gdlmx
by
5.0k points

1 Answer

3 votes

2)
\overline{AG} \cong \overline{GC} (a segment bisector divides a segment into two congruent segments)

3)
\overline{EG} \cong \overline{GF} (a segment bisector divides a segment into two congruent segments)

4)
\angle AGE \cong \angle FGC (vertical angles are congruent)

5)
\triangle AGE \cong \triangle CGF (SAS)

6)
\angle FCG \cong \angle GAE (CPCTC)

7)
\overline{AE} \parallel \overline{FC} (converse of alternate interior angles theorem)

8)
\overline{AB} \parallel \overline{CD} (segments collinear with parallel segments are parallel)

9)
\angle DAC \cong \angle ACB (alternate interior angles theorem)

10)
\angle DAB \cong \angle DCB (congruent angles added to congruent angles form congruent angles)

11)
ABCD is a parallelogram (a quadrilateral with two pairs of opposite congruent angles in a parallelogram)

User Kerri Shotts
by
5.4k points