209k views
13 votes
Given: AC and BD bisect each other.
Prove: AB | CD and BC || AD.

Given: AC and BD bisect each other. Prove: AB | CD and BC || AD.-example-1
User Ygautomo
by
5.4k points

1 Answer

13 votes

2)
\overline{AE} \cong \overline{EC} (a segment bisector splits a segment into two congruent parts)

3)
\overline{BE} \cong \overline{ED} (a segment bisector splits a segment into two congruent parts)

4)
\angle AEB \cong \angle CED (vertical angles are congruent)

5)
\triangle BEA \cong \triangle DEC (SAS)

6)
\angle EBA \cong \angle EDC (CPCTC)

7)
\overline{AB} \parallel \overline{CD} (converse of alternate interior angles theorem)

8)
\angle BEC \cong \angle AED (vertical angles are congruent)

9)
\triangle BEC \cong \triangle DEA (SAS)

10)
\angle ECB \cong \angle EAD (CPCTC)

11)
\overline{BC} \parallel \overline{AD} (converse of alternate interior angles theorem)

User Dast
by
6.4k points