64.9k views
5 votes
Find the domain of the function (f/g)(x) given f (x)=x^2-4x-5 and g(x)=x^2-25

User Humbert
by
7.7k points

2 Answers

4 votes

Answer:

all real numbers except ±5.

Explanation:

just took the final exam

User Vtcajones
by
8.4k points
4 votes

Answer:

all real numbers except ±5.

Explanation:

Each function (f(x), g(x)) has a domain that is all real numbers. Their quotient (f(x)/g(x)) must exclude values that make g(x) = 0. The quotient is undefined when the denominator is zero. Those excluded values are x = ±5.

The domain of (f/g)(x) is all real numbers except ±5.

___

Of course you recognize x^2 -25 = 0 has solutions x = ±√25 = ±5. You can get there two ways:

  1. add 25 and take the square root: x^2=25; x=±√25.
  2. factor the difference of squares and set the factors to zero: (x-5)(x+5)=0 has solutions x-5=0 and x+5=0, that is, x = ±5.
User Hekevintran
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories