204k views
3 votes
Find the sum of the finite geometric sequence

Find the sum of the finite geometric sequence-example-1
User Fgblanch
by
5.3k points

1 Answer

4 votes


\displaystyle\sum_(n=1)^5-\left(\frac13\right)^(n-1)=-\left(1+\frac13+\frac1{3^2}+\frac1{3^3}+\frac1{3^4}\right)

Let
S_5 denote the right hand side. Notice that


\frac13S_5=-\left(\frac13+\frac1{3^2}+\frac1{3^3}+\frac1{3^4}+\frac1{3^5}\right)

so if we consider
S_5-\frac13S_5, the difference reduces to


\frac23S_5=-\left(1-\frac1{3^5}\right)


\implies S_5=\frac32\left(\frac1{3^5}-1\right)=\frac1{2\cdot3^4}-\frac32=\frac1{162}-\frac32=-(121)/(81)

so the answer is E.

User Shakti Malik
by
5.2k points