204k views
3 votes
Find the sum of the finite geometric sequence

Find the sum of the finite geometric sequence-example-1
User Fgblanch
by
9.3k points

1 Answer

4 votes


\displaystyle\sum_(n=1)^5-\left(\frac13\right)^(n-1)=-\left(1+\frac13+\frac1{3^2}+\frac1{3^3}+\frac1{3^4}\right)

Let
S_5 denote the right hand side. Notice that


\frac13S_5=-\left(\frac13+\frac1{3^2}+\frac1{3^3}+\frac1{3^4}+\frac1{3^5}\right)

so if we consider
S_5-\frac13S_5, the difference reduces to


\frac23S_5=-\left(1-\frac1{3^5}\right)


\implies S_5=\frac32\left(\frac1{3^5}-1\right)=\frac1{2\cdot3^4}-\frac32=\frac1{162}-\frac32=-(121)/(81)

so the answer is E.

User Shakti Malik
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories