Answer: The number of moles in 250.0 L of He at STP is 11.0 mole.
Step-by-step explanation:
- It is known that 1.0 mole of a gas at STP conditions will occupy 22.7 L.
- To show this information: STP means that T = 0.0 °C = 273.15 K and P = 1.0 kPa = (100/101.325) = 0.9869 atm.
- From the ideal gas law: PV = nRT.
- Where, P is the pressure in atm (P = 1.0 atm at STP).
- n is the number of moles (n = 1.0 mole).
- R is the general gas constant (R = 0.0821 L.atm/mol.K).
- T is the temperature in K (T = 273.15 K at STP).
- and now we can get the volume of 1.0 mole at STP: V = nRT/P
- V = (1.0 mole x 0.0821 L.atm/mol.K x 273.15 K) / (0.9869 atm) = 22.7 L.
- Now, we can get the number of moles of 250.0 L of He at STP:
Using cross multiplication:
1.0 mole → 22.7 L
??? mole → 250.0 L
- The number of moles in 250.0 L of He at STP = (250.0 L x 1.0 mole) / (22.7 L) = 11.01 mole ≅ 11.0 mole.