207k views
5 votes
HELP HELP HELP
Just a quick question for 100 points! :)

HELP HELP HELP Just a quick question for 100 points! :)-example-1
User Sulimmesh
by
3.1k points

1 Answer

7 votes

Answer:

see attached graphs

Explanation:

Transformations

For a > 0


f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}


f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}


f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}


f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}


y=a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of}\:a


y=f(ax) \implies f(x) \: \textsf{stretched parallel to the x-axis (horizontally) by a factor of} \: (1)/(a)


y=-f(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}


y=f(-x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}

Parent function:
f(x) = x

Each transformation is a transformation of the parent function only:

Translation of 4 units down


\implies f(x)-4=x-4


\implies y=x-4

A stretch by a factor of 3


\implies 3f(x)=3x


\implies y=3x

A reflection and a translation 1 unit up


\implies f(-x)+1=-x+1


\implies y=-x+1

HELP HELP HELP Just a quick question for 100 points! :)-example-1
HELP HELP HELP Just a quick question for 100 points! :)-example-2
HELP HELP HELP Just a quick question for 100 points! :)-example-3
User Nickal
by
3.9k points