73.9k views
4 votes
Help me please!!?!?? ?

Help me please!!?!?? ?-example-1
User Fefux
by
7.4k points

1 Answer

4 votes

1


3x^2 + 5y^2 - 12x + 30y + 42 = 0


3x^2 - 12x + 5y^2 + 30y = - 42


3(x^2 - 4x) + 5(y^2 + 6y) = -42


3(x^2 -4x + 4) + 5(y^2 + 6y + 9) = -42 + 12 + 45


3(x-2)^2 + 5(y+3)^2 = 15


((x-2)^2)/(5) + ((y+3)^2)/(3) = 1

Ellipse, same signs different coefficients on
x^2 and
y^2

2


9x^2 -36x - 4y^2 + 8y = 4


9(x^2 - 4x + 4) - 4(y^2 - 2y + 1) = 4 + 36 - 4


9(x- 2)^2 - 4(y - 1^2) = 36

Hyperbola, opposite signs on
x^2 and
y^2

3


y = x^2 +2x + 3 = (x + 1)^2 + 2

parabola

4


x^2 - 4 x + y^2 + 4y = 4


(x - 2)^2 + (y+2)^2 = 4 + 4 + 4 = 12

equal coefficents on
x^2 and
y^2, circle

5


-9x^2 - 18x + 4y^2 - 8y = 41


-9(x^2 -2x + 1) + 4(y^2 - 2y + 1) = 41 - 9 + 4


-9(x-1)^2 + 4(y-1)^2 = 36

hyperbola, opposite signs

6


-4x = y^2 - 2y - 11 = (y-1)^2 - 12

That's a parabola, sideways open to the left

7


2(x^2 + 6x) + 3(y^2 - 8y) = -60


2(x^2 + 6x + 9) + 3(y^2 - 8y + 16) = -60 + 18 + 48


2(x+3)^2 + 3(y - 4)^2 = 6


((x+3)^2)/(3) + ((y-4)^2)/(2) = 1

Ellipse, different coefficients

8


16x^2 - 32x - y^2 - 6y = 57


16(x^2 - 2x + 1) - (y^2 + 6y + 9) = 57 + 16 - 9 = 64

opposite signs, hyperbola

You'll have to do the graphing yourself, sorry


User Ben Zifkin
by
7.8k points