If
and
are continuous everywhere, that means that for any
, the limit as
for either function is the value of that function at
:
![\displaystyle\lim_(x\to c)f(x)=f(c)\,\text{and}\,\lim_(x\to c)g(x)=g(c)](https://img.qammunity.org/2020/formulas/mathematics/college/hjllupdtxq9wfeke5dm9rl6c6vtx4aw428.png)
Applying some properties of limits, we can rewrite the original limit as
![\displaystyle\lim_(x\to2)(f(x)+4g(x))=\lim_(x\to2)f(x)+\lim_(x\to2)4g(x)=\lim_(x\to2)f(x)+4\lim_(x\to2)g(x)=16](https://img.qammunity.org/2020/formulas/mathematics/college/q64v3biq3wu46hppf75ievlco12m0cac1n.png)
Given the continuity of
and
, we have
![f(2)+4g(2)=16\implies 4g(2)=16-3=13\implies g(2)=\frac{13}4](https://img.qammunity.org/2020/formulas/mathematics/college/xl14hskb160y8wao1y7rdz8rgcztecaide.png)
So for both parts, the answer is 13/4.