Parameterize each line segment from
to
by
![\vec r(t) = (1-t) (x_0\,\vec\imath + y_0\,\vec\jmath + z_0\,\vec k) + t (x_1\,\vec\imath + y_1\,\vec\jmath + z_1\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/afeq57ycoevyrlx1pn0wwls5afcgini4p2.png)
with
. The work done by
on the particle along each segment is given the line integral of
with respect to that segment,
![\displaystyle \int_(C_i) \vec F \cdot d\vec r = \int_0^1 \vec F(\vec r_i(t)) \cdot (d\vec r_i(t))/(dt) \, dt](https://img.qammunity.org/2023/formulas/mathematics/college/sw09u8ccwqu0qdvqu7ys13p6mslojf8d2l.png)
• (3, 0, 0) to (3, 5, 1)
![\vec r_1(t) = 3\,\vec\imath + 5t\,\vec\jmath + t\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/y563o8u081c0couscfamy44fxsrs1x3ybx.png)
![W_1 = \displaystyle \int_0^1 \left(t^2\,\vec\imath + 75t\,\vec\jmath + 50t^2\,\vec k\right) \cdot \left(5\,\vec\jmath + \vec k\right) \, dt \\\\ ~~~~~~~~ = \int_0^1 (375t + 50t^2) \, dt = \frac{1225}6](https://img.qammunity.org/2023/formulas/mathematics/college/4nff65etisv6snv0w8n73a9bfg299f3jk3.png)
• (3, 5, 1) to (0, 5, 1)
![\vec r_2(t) = 3(1-t)\,\vec\imath + 5(1-t)\,\vec\jmath + \vec k](https://img.qammunity.org/2023/formulas/mathematics/college/bm4sa4g8bztmikfnkqj29qe0tj3vp2chia.png)
![W_2 = \displaystyle \int_0^1 \left(\vec\imath + 75(1-t)\,\vec\jmath + 50 \,\vec k\right) \cdot \left(-3\,\vec\imath - 5\,\vec\jmath\right) \, dt \\\\ ~~~~~~~~ = -3 \int_0^1 \,dt = -3](https://img.qammunity.org/2023/formulas/mathematics/college/snxv1dbchyorhyp397u0wlpjheaqb3iz5s.png)
• (0, 5, 1) to (0, 0, 0)
![\vec r_3(t) = 5(1-t)\,\vec\jmath + (1-t)\,\vec k](https://img.qammunity.org/2023/formulas/mathematics/college/izhrfxg8mhn4kcm11qtfxelhj6f794n0bw.png)
![W_3 = \displaystyle \int_0^1 \left((1-t)^2\,\vec\imath + 50(1-t)^2\,\vec k\right) \cdot \left(-5\,\vec\jmath - \vec k\right) \, dt \\\\ ~~~~~~~~ = \int_0^1 (-50 + 100t - 50t^2) \, dt = -\frac{50}3](https://img.qammunity.org/2023/formulas/mathematics/college/oc4vs93mn71sypvsfbnoqxtxi8z2uuvtzq.png)
Then the total work done by
on the particle is
![W = W_1 + W_2 + W_3 = \boxed{\frac{369}2}](https://img.qammunity.org/2023/formulas/mathematics/college/rvyjoz2lcg3hsenb4q8lcvrvfuoyr8crsv.png)