Look at the picture.
We have in a base an equilateral triangle.
The formula of the area of an equilateral triangle:
![A_B=(a^2\sqrt3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/47yc37e3x9kyrahzoopt0s74rs7l8x1r8t.png)
We have a = 12. Substitute:
![A_B=(12^2\sqrt3)/(4)=(144\sqrt3)/(4)=36\sqrt3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/waxi70lfpsknc5vsoofncmrgnuqxobh0df.png)
The lateral side is a isosceles triangle. The formula of the area of a triangle is:
![A_\triangle=(1)/(2)bh](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r7xnlfdm67rjarvji0z64kbdj56pl8rc8j.png)
We must calculate the length of h using the Pythagorean theorem:
![h^2+6^2=10^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c0r37uiabkf9flasx96m71gewiaqfbn5ul.png)
subtract 36 from both sides
![h^2=64\to h=√(64)\to h=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uj7p9v194u36jlyr9414xqtz2kcof3vc07.png)
We have b = 13 and h = 8. Substitute:
![A_\triangle=(1)/(2)(12)(8)=(6)(8)=48](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4xrus309r3dgf6uh4i5djuiamdvu5mql3h.png)
The Total Area:
![T.A.=A_B+3A_\triangle](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tuvwz6g4v326kv94dwlmdzvp6kll8iow2a.png)
Substitute:
![T.A.=36\sqrt3+3(48)=\boxed{144+36\sqrt3}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4e7n45cg6orczx5w6drrpy9bodyyxd6lfk.png)