Answer:
Inverse function: If a function f(x) is mapping x to y, then the inverse function of f(x) maps back y to x
Given that:
![y = (2)/(3)x -6](https://img.qammunity.org/2020/formulas/mathematics/high-school/q3s03osel7jokpbnhfisnh58d7dqm8i7mk.png)
Interchange the variable x and y;
![x = (2)/(3)y -6](https://img.qammunity.org/2020/formulas/mathematics/high-school/dy7ura2ionqxm1fqv3k57yv0flmgdp743l.png)
Add 6 to both sides we get;
![x +6= (2)/(3)y -6+6](https://img.qammunity.org/2020/formulas/mathematics/high-school/lkysfgl0toe1jvbxjdo0v9ylv6ee2iaydw.png)
Simplify:
![x+6= (2)/(3)y](https://img.qammunity.org/2020/formulas/mathematics/high-school/rjg84gx5vrhyyvhxmzxga95w88erfuvrb2.png)
Multiply both sides by
we get;
![(3)/(2)(x+6) = y](https://img.qammunity.org/2020/formulas/mathematics/high-school/p7v27bllfl7nm4tsa93h1rqvzrroveb31h.png)
or
![y = (3)/(2)x+ 9](https://img.qammunity.org/2020/formulas/mathematics/high-school/94tvahlrt2g0e67fqvk3dr0twezek8bxt4.png)
Therefore, the inverse of
is,
![y = (3)/(2)x+ 9](https://img.qammunity.org/2020/formulas/mathematics/high-school/94tvahlrt2g0e67fqvk3dr0twezek8bxt4.png)