Answer:
(a)= option 3
(b)= option 3
Explanation:
(A) It is given that a sequence is defined by the recursive function
and
![a_(n)=a_(n-1)+n](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2xialkqbwjwyyg9xpr30zf2egkmiqzumm0.png)
Now, substituting the value of n=2 in above equation,
![a_(2)=a_(1)+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hls4qescc16styt5zazj2mlcyhvbyx4h5c.png)
![a_(2)=1+2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kpnziqadfkm2c6wk0ntmjbw7s6mrzvi3ro.png)
![a_(2)=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2oix75lk1jjbg6dkbwei6xqg97whcu7prf.png)
Again putting n=3,
![a_(3)=a_(2)+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vcifskzpwrunrdrds8f9d831n5pagvtjfm.png)
![a_(3)=3+3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/phl0fk2cn0tqk74whknc2158bo4tllhjan.png)
![a_(2)=6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y9wznm5sqoiv991jzqwpewcsllpi57qa05.png)
Putting n=4,
![a_(4)=a_(3)+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/spnvxjnsj0s5sv786gn4i30o2lzplw8i98.png)
![a_(4)=6+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/120gm1yj2lmbei2g9c1ea2pdeld1wu5uzt.png)
![a_(4)=10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v2ir09vzao9elqmwkes35tahn0wl4url2d.png)
Putting n=5,
![a_(5)=a_(4)+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6x95sqlwnjn5grh7sny5a8zd38m8tef69v.png)
![a_(5)=10+5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yexkdyylpagmhf537vlsx4q1uqr2dlcdrj.png)
![a_(5)=15](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5cfyy65rjtvfm4z14h5blbr6bzoixn8cv8.png)
Putting n=6,
![a_(6)=a_(5)+6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/n2qp1wshf1xytpbq5ypf4xaflbdf6z6fxf.png)
![a_(6)=15+6](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tt7tbcgolbfje7m3kkbdrazzxupwri4f6w.png)
![a_(6)=21](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aihyse4cte5p9pzvoos463qhaw264f1dpt.png)
Putting n=7,
![a_(7)=a_(6)+7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rhsrrjahzcm30h9tq8zougj5z0tw5lmdrt.png)
![a_(7)=21+7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bzt1bdzdhf1iqkzktk67c10y8ckuwm7kqr.png)
![a_(7)=28](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d8qvw0g40zrl4xjzipwc7k9gse0xy2xfh2.png)
Hence, option 3 is correct.
(B) The given sequence is :
5, -10, 20, -40, 80.....
Since, the given sequence is GP, therefore
and r=-2
The nth term is given by:
![a_(n)=a_(1)r^(n-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/geo2f4d6xwth35c67s1ejasyqusprr9vrm.png)
For fifteenth term, put n=15 in above equation, we get
![a_(15)=5(-2)^(14)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/edblw4geo3b9xt31qwxv6f8atvfrg88k76.png)
=
![5{*}16384](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r9t6jr64thnc5g2ayd1fzqc1lp3frps2rq.png)
=
![81920](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h4g5nsr417uexk2rtdnxucotefzr1wnx3i.png)
Hence, the fifteenth term is 81920.
Option 3 is correct.