Answer:
-960
Explanation:
1) Expand
using the binomial theorem.
Binomial Theorem:
![\left(a+b\right)^n=\sum _(i=0)^n\binom{n}{i}a^(\left(n-i\right))b^i](https://img.qammunity.org/2023/formulas/mathematics/college/7ibbn0em9qlmr9hzzzepfpf5uv4dkfpfcq.png)
1.1) Substitute the values into the theorem.
![\sum _(i=0)^(10)\binom{10}{i}x^(\left(10-i\right))\left(-2y\right)^i](https://img.qammunity.org/2023/formulas/mathematics/college/n8y9xe07a6lj0noi8fmm6ihis8ayc233up.png)
1.2) Expand summation.
![=(10!)/(0!\left(10-0\right)!)x^(10)\left(-2y\right)^0+(10!)/(1!\left(10-1\right)!)x^9\left(-2y\right)^1+(10!)/(2!\left(10-2\right)!)x^8\left(-2y\right)^2+(10!)/(3!\left(10-3\right)!)](https://img.qammunity.org/2023/formulas/mathematics/college/mr7rmulvygawc0jn7cl7c6vty7f2ex7fmx.png)
![x^7\left(-2y\right)^3+(10!)/(4!\left(10-4\right)!)x^6\left(-2y\right)^4+(10!)/(5!\left(10-5\right)!)x^5\left(-2y\right)^5+(10!)/(6!\left(10-6\right)!)x^4\left(-2y\right)^6+(10!)/(7!\left(10-7\right)!)x^3\left(-2y\right)^7+(10!)/(8!\left(10-8\right)!)x^2\left(-2y\right)^8+(10!)/(9!\left(10-9\right)!)x^1\left(-2y\right)^9+(10!)/(10!\left(10-10\right)!)x^0\left(-2y\right)^(10)](https://img.qammunity.org/2023/formulas/mathematics/college/9urdfmxkj20uabnwxfubn5yeqqclo4jbxm.png)
1.3) Simplify them.
1.4) You will get:
![=x^(10)-20x^9y+180x^8y^2-960x^7y^3+3360x^6y^4-8064x^5y^5+13440x^4y^6-15360x^3y^7+11520x^2y^8-5120xy^9+1024y^(10)](https://img.qammunity.org/2023/formulas/mathematics/college/imzwqj3omm7i0wwivprou36nt3anqyg2bp.png)
2) We are told to find the coefficient of
. Find it from the simplified expansion. The coefficient is -960.