160k views
5 votes
Given the figure below is a special type of trapezoid and WX || YZ, which angle pairs can be proven supplementary by the given information? Select all that apply.

∠W and ∠Z
∠W and ∠Y
∠X and ∠Y
∠X and ∠Z
∠W and ∠X

Given the figure below is a special type of trapezoid and WX || YZ, which angle pairs-example-1
User Soamazing
by
8.1k points

2 Answers

6 votes

Answer:

The answer:

<W and <Z

<X and <Y

<W and <X


Explanation:


User Steve Banton
by
8.4k points
3 votes

Answer: The correct options are

(A) ∠W and ∠Z

(C) ∠X and ∠Y.

Step-by-step explanation: Given that the figure is a special type of trapezoid and WX || YZ.

We are to select all the angle pairs that can be proven supplementary by the given information.

We know that

if two parallel lines are cut by a transversal, then the sum of the measures of interior angles on the same side of the transversal is 180°.

In the given trapezoid, we have

WX || YZ and WZ is a transversal, so ∠W and ∠Z are interior angles on the same side of the transversal WZ.

So,

m∠W + m∠Z = 180°.

This implies that ∠W and ∠Z are supplementary.

Similarly,

WX || YZ and XY is a transversal, so ∠X and ∠Y are interior angles on the same side of the transversal XY.

So,

m∠X + m∠Y = 180°.

This implies that ∠X and ∠Y are supplementary.

Therefore, the pairs of angles that can be proven supplementary with the given information are

∠W and ∠Z ; ∠X and ∠Y.

Thus, (A) and (C) are correct options.

User Beanie
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories