Answer:
(D) 2.11
Explanation:
The given expression is:
![\frac{3.5{*}2+9}{10.4-1.4{*}2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a85oa04leu9zcv1rivjstsgssenb98jd91.png)
Simplifying the above given expression, we get
![(7.0+9)/(10.4-2.8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kqnm0eza37pokl135snfmrpnd8tnz4thrh.png)
=
![(16)/(7.6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ix5wy636qkmnrrnj78t8j09p2d0nfqkb9s.png)
Multiplying and dividing the above expression with 10, we get
=
![\frac{16{*}10}{7.6{*}10}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/82c0h60ikw8qpniw7kxjv1a01awtogbkrb.png)
=
![(160)/(76)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yswtsrug4tjh1xbxi7aomcygiqkydbbsmg.png)
=
![(40)/(19)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/33eowhkq005gduobljqxtjtgdo8r35ye79.png)
=
![2.11](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ty0706o1fd2jumbswha4vw4cpfpjh9hvic.png)
Hence, the simplified value of the given expression is 2.11, and thus option D is correct.