I assume the third equation is supposed to be
. We can divide both sides by 2 right away to simplify it a bit,
.
To start, the system in augmented-matrix form is
![\begin{bmatrix}1&-1&4&23\\2&-1&1&-1\\3&2&1&-22\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/thjbgd9vmgvpgxrazvk5os0sc4r3hsfw75.png)
Subtract 2 times row 1 from row 2, and 3 times row 1 from row 3:
![\begin{bmatrix}1&-1&4&23\\0&1&-7&-47\\0&5&-11&-91\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dhautaaylh1ev0k50lq282lgd9gnx4e0oh.png)
Subtract 5 times row 2 from row 3:
![\begin{bmatrix}1&-1&4&23\\0&1&-7&-47\\0&0&24&144\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rhuv9y99r5zqhk7nw42ef5evwdtliudzur.png)
Multiply row 3 by 1/24:
![\begin{bmatrix}1&-1&4&23\\0&1&-7&-47\\0&0&1&6\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zv314j6ym2nvw6wjvn59jhrpvzwp0jiui4.png)
Add 7 times row 3 to row 2:
![\begin{bmatrix}1&-1&4&23\\0&1&0&-5\\0&0&1&6\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/67tc7xakgotslng5r0uxniuxcpsi1l1ywz.png)
Add row 2 and -4 times row 3 to row 1:
![\begin{bmatrix}1&0&0&-6\\0&1&0&-5\\0&0&1&6\end{bmatrix}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9wj9itmh332czrf8idtuh91m95olrfhdls.png)
Then the solution to the system is
![(x,y,z)=(-6,-5,6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ibta0tiecb83zi5c5zlqj6md13i1zp8x3t.png)