226k views
1 vote
Katie says the graph of y=8 . (1/2)^x is the same as the graph of f(x)=8 . (1/2)^x. Do you agree? Explain your reasoning.

User Gjergj
by
4.6k points

2 Answers

4 votes

Answer:

Yes

Explanation:

Katie's Graph equation:
y=8((1)/(2))^x

Another graph equation:
f(x)=8((1)/(2))^x

Since the right hand side of both the equations of graphs are equal

So, Left hand side of both equations of graphs must be equal

So, :
y=f(x)

So, the graph of
y=8((1)/(2))^x is the same as the graph of
f(x)=8((1)/(2))^x

Refer the attached figure

Purple line :
f(x)=8((1)/(2))^x

Red line :
y=8((1)/(2))^x

Katie says the graph of y=8 . (1/2)^x is the same as the graph of f(x)=8 . (1/2)^x-example-1
User JacobSiegel
by
4.5k points
3 votes

Answer:

Yes

Explanation:

Yes, the graph of y=
8{*}((1)/(2))^(x) is same as the graph of f(x)=
8{*}((1)/(2))^(x) because the right hand side of both the equations is equal that is
8{*}((1)/(2))^(x), therefore by substituting different values of x in both equations, we obtain the same graph.

Katie says the graph of y=8 . (1/2)^x is the same as the graph of f(x)=8 . (1/2)^x-example-1
User Tiran Ut
by
5.0k points