Answer:
The measures of all angles are
![30\°,60\°,90\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4xe12z9cdw8d2gyb9xjssvzgp7mf0m3drr.png)
Explanation:
we know that
In a right triangle
Applying the Pythagoras theorem
![c^(2)=a^(2)+b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ipopn0dndgzoywacpkehydfdusw5okjgav.png)
where
c is the hypotenuse
a,b are the legs
In this problem we have
![c=8\ units, a=4\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/249eus98ekbatq4gljcnwt9suqz4gyj987.png)
Find the value of b
![8^(2)=4^(2)+b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kpl48h4spo98lurqq9491sxgf2w3rdaptm.png)
![b^(2)=8^(2)-4^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9vzhg9uceswzed9myxscliggmj0nn6k6hs.png)
![b^(2)=48](https://img.qammunity.org/2020/formulas/mathematics/middle-school/grhxeojifv5jjw6jcfybihu65apmzyn2v6.png)
![b=4√(3)\ units](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v6450cdfpzroe9rcri3d4l8c42p869ouzd.png)
Remember that
A right triangle has a right angle and the other two angles are complementary
Let
------> one of the two angles that are complementary
------> the second of the two angles that are complementary
so
![\alpha=arccos(a/c)=arccos(4/8)=60\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a0k1bg0yyixgprl1cs7uaaeewo6u6o1das.png)
![\theta=arccos(b/c)=arccos(4√(3)/8)=30\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/876i1exyudb3fpthkjauhk64zut6lk7tqw.png)
The measures of all angles are
![30\°,60\°,90\°](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4xe12z9cdw8d2gyb9xjssvzgp7mf0m3drr.png)