Answer:
(x-1)(8x-3)
Explanation:
![8x^2 - 3x -8x + 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/r4nrovtr2vjq7jjrve61ebduxg2zcck3s2.png)
Area of the rectangle is length * width
To find the possible dimension we need to factor the given area
the first parenthesis is length and second parenthesis is width
LEts factor
![8x^2 - 3x -8x + 3](https://img.qammunity.org/2020/formulas/mathematics/high-school/r4nrovtr2vjq7jjrve61ebduxg2zcck3s2.png)
We use grouping method
![(8x^2 - 3x)+(-8x + 3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/88grt7rawaqlyd4xdbafgozsunzltaflr5.png)
Take out GCf from each group
![x(8x- 3)-1(8x -3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1v1rxnxcjdkt9tjz355rg687s8z9hxk5oe.png)
(x-1)(8x-3)