498,944 views
7 votes
7 votes
Find the solution set for this equation:
-a2+4a=0
(Separate the two values with a comma)

User Endre Moen
by
3.0k points

2 Answers

12 votes
12 votes


\quad \quad \quad \quad\huge \tt \pink ❆ AnSweR \pink ❆


\quad\quad \tt-a^2+4a= 0


\: \: \: \: \: \: \: \: \: \: \:


\quad\quad\tt⇢-1(a^2 - 4a) = 0


\: \: \: \: \: \: \: \: \: \: \:


\quad\quad\tt⇢-1(a-4)a = 0


\: \: \: \: \: \: \: \: \: \: \:


\quad\quad\tt⇢a-4=0


\: \: \: \: \: \: \: \: \: \: \:


\quad\quad\tt⇢a = 0

-----------------------------------------------------------


\boxed{ \tt \blue{a = 0}}


\boxed{ \tt\blue{a = 4}}

User Ryyker
by
3.3k points
25 votes
25 votes


\quad \huge \quad \quad \boxed{ \tt \:Answer }


\qquad \tt \rightarrow \: \{ 0,4 \}

____________________________________


\large \tt Solution \: :


\qquad \tt \rightarrow \: - {a}^(2) + 4a = 0


\qquad \tt \rightarrow \: - ( {a}^(2) - 4a) = 0


\qquad \tt \rightarrow \: {a}^(2) - 4a = 0


\qquad \tt \rightarrow \:a(a - 4) = 0

The two cases are :

  • a = 0

or

  • a -4 = 0, that leads to a = 4

We can conclude :


\qquad \tt \rightarrow \:solution \: (a) = \{ 0,4\}

Answered by : ❝ AǫᴜᴀWɪᴢ ❞

User Mish
by
2.9k points