If you're just starting calculus, perhaps you're asking about using the definition of the derivative to differentiate
.
We have
![(d)/(dx) x^4 = \displaystyle \lim_(h\to0) \frac{(x+h)^4 - x^4}h](https://img.qammunity.org/2023/formulas/mathematics/high-school/5ljd4cwlybi5047d6iwogcscbgmndsfdmq.png)
Expand the numerator using the binomial theorem, then simplify and compute the limit.
![(d)/(dx) x^4 = \displaystyle \lim_(h\to0) \frac{(x^4+4hx^3 + 6h^2x^2 + 4h^3x + h^4) - x^4}h \\\\ ~~~~~~~~ = \lim_(h\to0) \frac{4hx^3 + 6h^2x^2 + 4h^3x + h^4}h \\\\ ~~~~~~~~ = \lim_(h\to0) (4x^3 + 6hx^2 + 4h^2x + h^3) = \boxed{4x^3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xcenw7uj5z40jvsv5muq9qjfeqb72avjvw.png)
In general, the derivative of a power function
is
. (This is the aptly-named "power rule" for differentiation.)