Steps
So here are a few rules with exponents that we will be applying for this problem:
- Powering a power:
![(x^m)^n=x^(m*n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fjoeynxnek9wrwnrch78g6z3h0hk7w8srj.png)
- Multiplying powers with the same base:
![x^m*x^n=x^(m+n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8iunbxjvz1ypai3x7216cqi8x0o30yexf9.png)
- Converting negative exponents to positive exponents:
![x^(-m)=(1)/(m^n)\ \textsf{//}\ (1)/(x^(-m))=x^m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/adxiukrtvij343jx1xffx7tj3he009z2zi.png)
Firstly, solve the outermost power:
![(2a^(-6) b^4)^3*2a^(-3) b^(-5)\\2^3a^(-6*3) b^(4*3)*2a^(-3) b^(-5)\\8a^(-18)b^(12)*2a^(-3)b^(-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jkl7k3mpy61xaas2dkix0ss66b6dvrdx5d.png)
Next, multiply:
![8a^(-18)b^(12)*2a^(-3)b^(-5)\\8*2a^(-18+(-3))b^(12+(-5))\\16a^(-21)b^7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k65cgglxctvtb8brf65adulfrobjhri0vy.png)
Finally, convert the negative exponents:
![16a^(-21)b^7\\\\(16b^7)/(a^(21))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x1rk39fnvk9fem9i15lydfp1ws1annyybc.png)
Answer
In short, your final answer is
![(16b^7)/(a^(21))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3mfgmq9xqtuvwme50ojrgncb03f4rg0d5v.png)