Answer:
The corresponding side of the first triangle is 4 m.
Explanation:
In similar triangle, ratio of areas of triangles is equal to the ratio of square of their corresponding sides.
Consider, the below two similar triangles,
area(ΔXYZ) = 20m² , area(ΔPQR) = 180m² and PQ = 12m
We have to find value of XY.
According to above property of similar triangle,
![\frac{ar(\bigtriangleup{XYZ})}{ar(\bigtriangleup{PQR})}=((XY)^2)/((PQ)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9r7vee6369v0uns36nqlyczuzfkmijqsgo.png)
Put values in the above equation, we get,
![(20)/(180)=((XY)^2)/((12)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nm8g3hin8ub5yvrbxpduvc9zbglw01hwsd.png)
Solving for XY,
![\Rightarrow (1)/(9)=((XY)^2)/(144)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/59sx15hn47hgt44rfchporc0kjuw90dk2h.png)
Cross multiply, we get,
![\Rightarrow (144)/(9)=(XY)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z3s4unj71h0y21dpvcb6hmzkal6ent4lim.png)
![\Rightarrow \sqrt{(144)/(9)}=(XY)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7ecgymv2ktz1ue9q9yis0c1q0xc3wnf9l0.png)
![\Rightarrow (12)/(3)=XY](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zjb56ssemltiybmc7ula7f80li902ofcr4.png)
![\Rightarrow XY=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ihkwnd4uisokov6n22md7s3ndtrn8lk3bl.png)
Thus, the corresponding side of the first triangle is 4 m.