181k views
2 votes
Could someone do all the problems and/or check my work?

Could someone do all the problems and/or check my work?-example-1
User Myasia
by
7.5k points

2 Answers

3 votes
11. You’ve done it correctly

12. Let x^2=y
y^2+13y+40=0
(y+8)(y+5)=0
y=8, 5
Since y=x^2
x^2=8 x^2=5
x=+/-√5 x= +/-2√2

13. x^4-x^2-x^2-8=0
x^4-2x^2-8=0
let x^2=y
Y^2-2y-8=0
(y-4)(y+2)=0
y=4, -2
Since y=x^2
X^2=4 X^2=-2
X= +/- 2 This wouldn’t be a real solution

14. It’s pretty much the same process, just substitute y in for x^2. If you’re confused feel free to ask and I can do it, or you can put it through Photomath

15. You’re on the right track so I’m just going to continue from where you left off
x^2(4x+5)-4(x+5)=0
(x^2-4)(4x+5)=0
x= +/- 2 4x=5
x=5/4 or 1 1/4

Hope this helped :)
User Sourcx
by
8.4k points
1 vote

NOTES: To find the intercepts/roots:

  • move everything to one side and 0 on the other
  • factor the equation
  • apply the Zero Product Property (set each factor equal to 0)
  • solve for x

11. Answer: x = {-4, 0, 5}

Explanation:


x^3=x^2+20x\\x^3-x^2-20x=0\\x(x^2-x-20)=0\\x(x-5)(x+4)=0\\x=0\quad x-5=0\quad x+4=0\\x=0\quad x=5\quad x=-4\\Solutions:\ x=\{-4, 0, 5\}

***********************************************************************************

12. Answer: x = No real solution

Explanation:


x^4+13x^2+40=0\\(x^2+5)(x^2+8)=0\\x^2+5=0\quad \qquad x^2+8=0\\x^2=-5\qquad \qquad x^2=-8\\x=\pm √(-5)\quad \quad x=\pm √(-8)\\ \text{Neither solution is a real number}

***********************************************************************************

13. Answer: x = {-2, 2}

Explanation:


x^4-x^2=x^2+8\\x^4-2x^2-8=0\\(x^2-4)(x^2+2)=0\\x^2-4=0\quad \qquad x^2+2=0\\x^2=4\qquad \qquad x^2=-2\\x=\pm √(4)\quad \quad x=\pm √(-2)\\x=\pm 2\qquad \text{x is not a real solution}\\Solutions: x = \{-2, 2\}

***********************************************************************************

14. Answer:
\bold{x=\bigg\{-1, 1, -(√(15))/(3), (√(15))/(3)\bigg\}}

Explanation:


3x^4-8x^2+5=0\\3x^4-3x^2-5x^2+5=0\\3x^2(x^2-1)-5(x^2-1)=0\\(3x^2-5)(x^2-1)=0\\3x^2-5=0\qquad x^2-1=0\\x^2=(5)/(3)\qquad \qquad x^2=1\\\\x=\pm \sqrt{(5)/(3)}\quad \quad x=\pm √(1)\\\\x=\pm (√(15))/(3)\qquad x=\pm1\\\\Solutions: x = \bigg\{-1, 1, -(√(15))/(3), (√(15))/(3)}\bigg\}

***********************************************************************************

15. Answer:
\bold{x=\bigg\{-2, 2, -(5)/(4)\bigg\}}

Explanation:


4x^3+5x^2-16x-20=0\\3x^4-3x^2-5x^2+5=0\\x^2(4x+5)-4(4x+5)=0\\(x^2-4)(4x+5)=0\\x^2-4=0\qquad 4x+5=0\\x^2=4\qquad \qquad 4x=-5\\\\x=\pm √(4)\quad \quad x=(-5)/(4)\\\\x=\pm 2\qquad \quad x=-(5)/(4)\\\\ Solutions: x = \bigg\{-2, 2, -(5)/(4)}\bigg\}

User Mikepj
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories