Answer:
Perimeter = a + b + sqrt ( (a^2/4) + b^2 ) + sqrt(3)a/2
Explanation:
Givens
- ΔABC is equilateral
- AB = a
- The diagram is given below
- AM is a Median
- PB ⊥ AB
- PM = b
Find
Perimeter of ΔPBM
Formula
Perimeter of ABM = AB + PB + PM + AM
Solution
- AB = a Given
- PM = b Given
- PB = sqrt( (a/2)^2 + b^2)
- PB = sqrt( a^2/4 + b^2) PMB is a right angle Pythagoras applies.
- AM = sqrt( AB^2 - BM^2) AMB is a right angle Pythagoras applies.
- AM = sqrt(a^2 - (a/2)^2 ) = sqrt(3)a/2
Perimeter = a + b + sqrt ( (a^2/4) + b^2 ) + sqrt(3)a/2 Answer