Answer: 0.02734375
Explanation:
Here, the total observation r trials, n = 10
Selected outcomes, r = 5
The probability of getting a right answer, p =
![(1)/(2) = 0.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7johtiwht77pfx9dtaixh64boqrevxup6j.png)
Since, the probability of not getting a right answer, q = 1 - p = 1- 0.5 = 0.5
Thus, By the binomial model,
The probability that of getting r outcomes in the n observation,
![P(r) = n_C_r p^r q^(n-r)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/77woyzlzpkewr8r3ct8zoy6dz9kj9h92xb.png)
Thus, The probability that the student gets 5 out of the 10 questions right,
⇒
![P(5) = (10!)/(5!(10-5)!) (0.5)^5 (0.5)^(10-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nsf8k0ot6ftnavp7so1ehhde3quqlqp43i.png)
⇒
![P(5) = 28* (0.5)^5 (0.5)^5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5612lu8ruonfm54cy2mvc2ivxkwx01cviz.png)
⇒
![P(5) = 28* (0.5)^(10)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4gd3rydxh3179e4ckhqaq8vqce04z9p48n.png)
⇒
![P(5) = 28* 0.0009765625](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9rut5r1orcllj2d0u7dp7onn7vq9e2iwz9.png)
⇒
![P(5) = 0.02734375](https://img.qammunity.org/2020/formulas/mathematics/middle-school/74w0ypi4s354299pu0hl3ng9nw2nbklqca.png)