21.8k views
4 votes
(1/4)^3z-1 =16^z+2*64^z-2

Z=___

Please help

User IndyWill
by
8.7k points

2 Answers

3 votes

Answer:

Z = 0.198877274

Explanation:


((1)/(4))^(3z-1) = 16^z + 2*16^(z-2)\\4^(1-3z) = 4^(2z) + 4^{(1)/(2)}*4^(2z-4)\\4^(1-3z) = 4^(2z) + 4^{2z-4+(1)/(2)}\\4^(1-3z) = 4^(2z) + 4^{2z-(7)/(2)}\\4^(1-3z) = 4^(2z) *(1+ 4^{-(7)/(2)})\\4^(1-3z) = 4^(2z) *(1+ 2^(-7))\\4^(1-3z) = 4^(2z) *(1+ (1)/(128) )\\4^(1-3z) = 4^(2z) *((129)/(128) )\\Taking\;\; Logarithm\;\; with\;\; base\;\; 4\\Log_4(4^(1-3z)) = Log_4(4^(2z)) + Log_4((129)/(128))\\1-3z = 2z + 0.005613627712 \\5z = 0.994386372\\z = 0.198877274

Hence, the value of Z = 0.198877274

User John Conde
by
8.1k points
7 votes

Answer:

The value of z is
(3)/(8)

Explanation:

Given equation,


((1)/(4))^(3z-1)=16^(z+2).64^(z-2)


(1)/(4^(3z-1))=(4)^(2z+4).(4)^(3z-6)


4^(1-3z)=4^(2z+4+3z-6)
(a^m.a^n=a^(m+n)\text{ and }a^m=(1)/(a^(-m)))


4^(1-3z)=4^(5z-2)

By comparing the exponents,


1-3z=5z-2


-3z-5z=-2-1


-8z=-3


\implies z=(3)/(8)

User Rawoof Ahamed
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories