The slope-intercept form:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
b - y-intercept
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
We have the points (2, 6) and (-4, -6). Substitute:
![m=(-6-6)/(-4-2)=(-12)/(-6)=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ze84csyye11oo7hvquvtp68vfvhlauj6mj.png)
Therefore we have the equation
![y=2x+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2odpo3xgd7i6k4uthpi5y0c9fbbv54pbjh.png)
Put the coordinates of the point (2, 6) to the equation:
![6=2(2)+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/flgennqdiit95hhv0dpqursynucamyn1k4.png)
subtract 4 from both sides
![2=b\to b=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pbla1ct3u1jxapm4l1s432xeuplng9dpxy.png)
Answer:
![\boxed{y=2x+2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uhez1qtexai47ttb5ruigqb88ift3h6rk7.png)