The horizontal component of the tension in the string is a centripetal force, so by Newton's second law we have
• net horizontal force
![F_(\rm tension) \sin(\theta) = \frac{mv^2}R](https://img.qammunity.org/2023/formulas/physics/college/e2ohacmueozw4589qosf0cf0bv7uhtbhar.png)
where
,
, and
is the radius of the circular path.
As shown in the diagram, we can see that
![\sin(\theta) = \frac Rr \implies R = r\sin(\theta)](https://img.qammunity.org/2023/formulas/physics/college/y6ee4ykyrm6ls6q1t4nkkan99z8zhmvwuf.png)
where
, so that
![F_(\rm tension) \sin(\theta) = \frac{mv^2}R \\\\ \implies F_(\rm tension) = (mv^2)/(r\sin^2(\theta))](https://img.qammunity.org/2023/formulas/physics/college/pc0dec6n2zjld38yotq88xxcd726nga1hu.png)
The vertical component of the tension counters the weight of the mass and keeps it in the same plane, so that by Newton's second law we have
• net vertical force
![F_(\rm \tension) \cos(\theta) - mg = 0 \\\\ \implies F_(\rm tension) = (mg)/(\cos(\theta))](https://img.qammunity.org/2023/formulas/physics/college/silganv4fzioy1wde7orjpxaw3e27r3fcl.png)
Solve for
:
![(mv^2)/(r\sin^2(\theta)) = (mg)/(\cos(\theta)) \\\\ \implies (\sin^2(\theta))/(\cos(\theta)) = (v^2)/(rg) \\\\ \implies (1-\cos^2(\theta))/(\cos(\theta)) = (v^2)/(rg) \\\\ \implies \cos^2(\theta) + (v^2)/(rg) \cos(\theta) - 1 = 0](https://img.qammunity.org/2023/formulas/physics/college/1xzuyt5bt57gm1oez07dhyw1m31dei97af.png)
Complete the square:
![\cos^2(\theta) + (v^2)/(rg) \cos(\theta) + (v^4)/(4r^2g^2) = 1 + (v^4)/(4r^2g^2) \\\\ \implies \left(\cos(\theta) + (v^2)/(2rg)\right)^2 = 1 + (v^4)/(4r^2g^2) \\\\ \implies \cos(\theta) + (v^2)/(2rg) = \pm \sqrt{1 + (v^4)/(4r^2g^2)} \\\\ \implies \cos(\theta) = -(v^2)/(2rg) \pm \sqrt{1 + (v^4)/(4r^2g^2)}](https://img.qammunity.org/2023/formulas/physics/college/6qn6t5iofpfx4ayy30esxkovejuw4hwye2.png)
Plugging in the known quantities, we end up with
![\cos(\theta) \approx 0.784 \text{ or } \cos(\theta) \approx -1.27](https://img.qammunity.org/2023/formulas/physics/college/rvvkta4yw75l58pi4qn4d3li9brt219q78.png)
The second case has no real solution, since
for all
. This leaves us with
![\cos(\theta) \approx 0.784 \implies \theta \approx \cos^(-1)(0.784) \approx \boxed{38.3^\circ}](https://img.qammunity.org/2023/formulas/physics/college/cffor45qw91ymwd76fuq9bd8v1z57a5s5l.png)