Answer:
Solutions of x are;
x = -7 + 8i and x = -7 -8i
Explanation:
Given the equation:
![x^2+14x+17 = -96](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e53pb5a3x7s1qj1llt2vrictv2fsxi4zth.png)
Add 96 both sides we get;
![x^2+14x+17+96 = 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v76k6dudeun673civuopfk1dk67rxp87nh.png)
![x^2+14x+113= 0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2m3gw558efgthm2cj8ztjj7huuao0ppxbf.png)
Using quadratic formula
then the solution is given by:
![x = (-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/38abh13ktyw24n5h9tu3xbmi3nzkhvirga.png)
On comparing we have;
a= 1, b =14 and c =113
![x = (-14\pm√((14)^2-4(1)(113)))/(2(1))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kr4i9jkq7vsgpo4z1ouxiqcdkk4wecdli6.png)
![x = (-14\pm√(196-452))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/557ou3xih0sym6vy7tswalb0id5fdw5qjt.png)
or
![x = (-14\pm√(-256))/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/99lxsf7jjola4ffwuds6786kn0vt7tuxg0.png)
Simplify:
; where i is the imaginary,
![i^2= -1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wzldawd34t8ttfcx7wjzhhwmym0sqoc12n.png)
or
![x = -7 \pm 8i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ex33dgcga2h0f6zu2q6g3her3xlp2ozpbz.png)
Therefore, the solution of x are; x = -7 + 8i and x = -7 -8i