Answer:
The other two dimensions are either (x+9) or (x-7). other two dimensions are either 21 inches or 7 inches.
Explanation:
The volume is defined by the function.
![V(x)=x^3+5x^2-57x-189](https://img.qammunity.org/2020/formulas/mathematics/high-school/c1eqxrau52kruz7nspgpp1634vli6i0soa.png)
The width is (x+3).
Using synthetic or long division method divide
by (x+3).
![V(x)=(x+3)(x^2+2x-63)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5lelebm2wy3jfger5pvsf1iz08svkxv3h5.png)
![V(x)=(x+3)(x^2+9x-7x-63)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kt0bsqyyz4lg2cyic2na01re9wgmr3brpe.png)
![V(x)=(x+3)(x+9)(x-7)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1jc4zuosxxtuksnrr2k7skrgowh32l8ga8.png)
The volume of cuboid is
![V=l* b* h](https://img.qammunity.org/2020/formulas/mathematics/high-school/cubws6ota8q35n0pqky5pb6rn0fzptsky3.png)
Therefore other two dimensions are either (x+9) or (x-7).
If the width is 15 inches, then
![x+3=15](https://img.qammunity.org/2020/formulas/mathematics/high-school/dbrsxjjas1b4ov9qvd6fhmcrpk9ujwe8gy.png)
![x=12](https://img.qammunity.org/2020/formulas/mathematics/high-school/l1rya1wlm4u6xxftxrhbufsqe6qjhgea2l.png)
The other two dimensions are
![x+9=12+9=21](https://img.qammunity.org/2020/formulas/mathematics/high-school/cvqrsex61nckyq8zpruba42wnmzai7np4y.png)
![x-7=12-7=5](https://img.qammunity.org/2020/formulas/mathematics/high-school/qbkm7o6e89266zdjuzcn1y1n15xd3ietp2.png)
Therefore other two dimensions are either (x+9) or (x-7). other two dimensions are either 21 inches or 7 inches.