404,108 views
11 votes
11 votes
Select the correct answer. If f(x)=2x^2-x-6 and g(x)=x^2-4, find f(x) ÷ g(x)

A, 2x + 3/x - 2
B. 2x - 3/x+ 2
C. 2x +3/x+2
D. 2x- 3/x-2​

User KeithSmith
by
2.7k points

2 Answers

8 votes
8 votes

Answer:


f(x) = {2x}^(2) - 4x - 6 \\ {2x}^(2) - 4x + 3x - 6 \\ = 2x(x - 2) + 3(x - 2) \\ g(x) = {x}^(2) - 4 \\ (x + 2)(x - 2) \\ (f(x))/(g(x)) = ((2x + 3)(x - 2))/((x + 2)(x - 2)) = (2x + 3)/(x + 2)

User Keith Thompson
by
2.9k points
24 votes
24 votes


\underline{\underline{\boxed{ \pink\star \: C.) \: \sf{(2x +3)/(x + 2)}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Here,


\sf{f(x) = 2x^2 - x - 6}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{2x^2 - 4x + 3x - 6}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{2x(x-2)+3(x-2)}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{(2x+3)(x-2)}

---------------------------------------------------


\sf{g(x) = x^2 - 4}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{x^2 - 2^2}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow\sf{(x+2)(x-2)}

Therefore,


\huge\sf{ (f(x))/(g(x)) = ((2x+3)(x-2))/((x+2)(x-2))}


\: \: \: \: \: \: \: \: \: \: \:


\longrightarrow \huge\sf{ (2x + 3)/(x + 2)}


\boxed{\underline{\color{hotpink}{ \red \star \: ᖇEᒪᗩ᙭GᖇOᗯ \: \: }}}

User MadhavanRP
by
3.2k points