14.1k views
15 votes
How to solve part ii and iii

How to solve part ii and iii-example-1

1 Answer

13 votes

(i) Given that


\tan^(-1)(x) + \tan^(-1)(y) + \tan^(-1)(xy) = (7\pi)/(12)

when
x=1 this reduces to


\tan^(-1)(1) + 2 \tan^(-1)(y) = (7\pi)/(12)


\frac\pi4 + 2 \tan^(-1)(y) = (7\pi)/(12)


2 \tan^(-1)(y) = \frac\pi3


\tan^(-1)(y) = \frac\pi6


\tan\left(\tan^(-1)(y)\right) = \tan\left(\frac\pi6\right)


\implies \boxed{y = \frac1{\sqrt3}}

(ii) Differentiate
\tan^(-1)(xy) implicitly with respect to
x. By the chain and product rules,


\frac d{dx} \tan^(-1)(xy) = \frac1{1+(xy)^2} * \frac d{dx}xy = \boxed{(y + x(dy)/(dx))/(1 + x^2y^2)}

(iii) Differentiating both sides of the given equation leads to


\frac1{1+x^2} + \frac1{1+y^2} (dy)/(dx) + (y + x(dy)/(dx))/(1+x^2y^2) = 0

where we use the result from (ii) for the derivative of
\tan^(-1)(xy).

Solve for
(dy)/(dx) :


\frac1{1+x^2} + \left(\frac1{1+y^2} + \frac x{1+x^2y^2}\right) (dy)/(dx) + \frac y{1+x^2y^2} = 0


\left(\frac1{1+y^2} + \frac x{1+x^2y^2}\right) (dy)/(dx) = -\left(\frac1{1+x^2} + \frac y{1+x^2y^2}\right)


(1+x^2y^2 + x(1+y^2))/((1+y^2)(1+x^2y^2)) (dy)/(dx) = - (1+x^2y^2 + y(1+x^2))/((1+x^2)(1+x^2y^2))


\implies (dy)/(dx) = - ((1 + x^2y^2 + y + x^2y) (1 + y^2) (1 + x^2y^2))/((1 + x^2y^2 + x + xy^2) (1+x^2) (1+x^2y^2))


\implies (dy)/(dx) = -((1 + x^2y^2 + y + x^2y) (1 + y^2))/((1 + x^2y^2 + x + xy^2) (1+x^2))

From part (i), we have
x=1 and
y=\frac1{\sqrt3}, and substituting these leads to


(dy)/(dx) = -\frac{\left(1 + \frac13 + \frac1{\sqrt3} + \frac1{\sqrt3}\right) \left(1 + \frac13\right)}{\left(1 + \frac13 + 1 + \frac13\right) \left(1 + 1\right)}


(dy)/(dx) = -\frac{\left(\frac43 + \frac2{\sqrt3}\right) * \frac43}{\frac83 * 2}


(dy)/(dx) = -\frac13 - \frac1{2\sqrt3}

as required.

User Gogol
by
3.8k points