14.1k views
15 votes
How to solve part ii and iii

How to solve part ii and iii-example-1

1 Answer

13 votes

(i) Given that


\tan^(-1)(x) + \tan^(-1)(y) + \tan^(-1)(xy) = (7\pi)/(12)

when
x=1 this reduces to


\tan^(-1)(1) + 2 \tan^(-1)(y) = (7\pi)/(12)


\frac\pi4 + 2 \tan^(-1)(y) = (7\pi)/(12)


2 \tan^(-1)(y) = \frac\pi3


\tan^(-1)(y) = \frac\pi6


\tan\left(\tan^(-1)(y)\right) = \tan\left(\frac\pi6\right)


\implies \boxed{y = \frac1{\sqrt3}}

(ii) Differentiate
\tan^(-1)(xy) implicitly with respect to
x. By the chain and product rules,


\frac d{dx} \tan^(-1)(xy) = \frac1{1+(xy)^2} * \frac d{dx}xy = \boxed{(y + x(dy)/(dx))/(1 + x^2y^2)}

(iii) Differentiating both sides of the given equation leads to


\frac1{1+x^2} + \frac1{1+y^2} (dy)/(dx) + (y + x(dy)/(dx))/(1+x^2y^2) = 0

where we use the result from (ii) for the derivative of
\tan^(-1)(xy).

Solve for
(dy)/(dx) :


\frac1{1+x^2} + \left(\frac1{1+y^2} + \frac x{1+x^2y^2}\right) (dy)/(dx) + \frac y{1+x^2y^2} = 0


\left(\frac1{1+y^2} + \frac x{1+x^2y^2}\right) (dy)/(dx) = -\left(\frac1{1+x^2} + \frac y{1+x^2y^2}\right)


(1+x^2y^2 + x(1+y^2))/((1+y^2)(1+x^2y^2)) (dy)/(dx) = - (1+x^2y^2 + y(1+x^2))/((1+x^2)(1+x^2y^2))


\implies (dy)/(dx) = - ((1 + x^2y^2 + y + x^2y) (1 + y^2) (1 + x^2y^2))/((1 + x^2y^2 + x + xy^2) (1+x^2) (1+x^2y^2))


\implies (dy)/(dx) = -((1 + x^2y^2 + y + x^2y) (1 + y^2))/((1 + x^2y^2 + x + xy^2) (1+x^2))

From part (i), we have
x=1 and
y=\frac1{\sqrt3}, and substituting these leads to


(dy)/(dx) = -\frac{\left(1 + \frac13 + \frac1{\sqrt3} + \frac1{\sqrt3}\right) \left(1 + \frac13\right)}{\left(1 + \frac13 + 1 + \frac13\right) \left(1 + 1\right)}


(dy)/(dx) = -\frac{\left(\frac43 + \frac2{\sqrt3}\right) * \frac43}{\frac83 * 2}


(dy)/(dx) = -\frac13 - \frac1{2\sqrt3}

as required.

User Gogol
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories