The slope-intercept form:
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
m - slope
b - y-intercept
The formula of a slope:
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc06wy5n2hf2a0hmyba6df4ibmxk1cn53a.png)
We have two points (2, 0) and (-2, -4). Substitute:
![m=(-4-0)/(-2-2)=(-4)/(-4)=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fw7z8o9ijwc0az3llo55357r6s42amwedh.png)
Therefore we have the equation of a line
![y=1x+b\to y=x+b](https://img.qammunity.org/2020/formulas/mathematics/middle-school/odnuz112az5208bx9js8zkn4k4ue5u2evl.png)
Put the coordinates of the point (2, 0) to the equation:
subtract 2 from both sides
![-2=b\to b=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tk4ytx8i7et798de5f6kcgm5nb7sp6l44b.png)
Answer:
![\boxed{y=x-2}\to\boxed{3)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/e8gyo4vup08594kdpq7s4gymky4vx04u6s.png)