Answer:
![y(t)=(-90(feet)/(minute))t+2000feet](https://img.qammunity.org/2020/formulas/mathematics/high-school/57pxbdjz47higd66iaqw3dsio5corwvt30.png)
Explanation:
Given the linear function in the form
![y=mx+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/8nudzfk4b5l0arb9iixag2w8am6zn99zlr.png)
We are going to represent the situation using the linear function.
We are going to call the variable ''x'' time. We can write x = t ⇒
![y=mt+b](https://img.qammunity.org/2020/formulas/mathematics/high-school/kh2xw8bzc7i764s2kt1er32kj2f8xtbt8s.png)
will be the altitude function that depends on the variable ''t'' that is time in minutes.
In the instant
the hot air balloon has an altitude of 2000 feet ⇒
⇒
![b=2000feet](https://img.qammunity.org/2020/formulas/mathematics/high-school/f9ghzgoneop52ztd4lfin1a0pjtnao6bea.png)
We can think that the slope ''m'' is the constant rate of the function.
Given that the hot air balloon descends,
⇒
![m=-90(feet)/(minute)](https://img.qammunity.org/2020/formulas/mathematics/high-school/f6c81erx2wrmo5hnuf6ozjrb4xda7cskes.png)
Now we write the function :
![y=mt+b\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/ht9os7v256q4vb5dbu7bw0l55syxkcg2f2.png)
![y(t)=(-90(feet)/(minute))t+2000feet](https://img.qammunity.org/2020/formulas/mathematics/high-school/57pxbdjz47higd66iaqw3dsio5corwvt30.png)
For example, when t = 0 ⇒
![y(0)=(-90(feet)/(minute)).0+2000feet=2000feet](https://img.qammunity.org/2020/formulas/mathematics/high-school/fsxojswub6n1pstn9jl6baczt0tuhtoo7l.png)
Or if we want to find the time when the hot air balloon finally descends :
![0=(-90(feet)/(minute))t+2000feet](https://img.qammunity.org/2020/formulas/mathematics/high-school/2iv5zyr290bgi4vomj3marfylmjub5xqs2.png)
![t=(-2000feet)/(-90(feet)/(minute))=22.222minutes](https://img.qammunity.org/2020/formulas/mathematics/high-school/olfu4l1guykyznnyb6qaychi0eh1myene0.png)