We have been given an expression
. We are asked to simplify our given expression.
First of all, we will simplify the expression inside radical as:
![\sqrt{(15n^(11))/(64n^4)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ssshp2xy9v8toumvq1h896xpe0pxe4nsms.png)
Using exponent property
, we will get:
![\sqrt{(15n^(7))/(64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6mu4mltu8q0y62t9vloipgugjwdqfplc8c.png)
Now we will use exponent property
.
![(√(15n^7))/(√(64))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v4eqwpoqci49o70lktxdnnfhwekrufyw4f.png)
![(√(15n\cdot n^6))/(√(8^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pamcyd5xhl5ypjtybrm7vc9vwthl193iop.png)
![(√(15n\cdot (n^3)^2))/(√(8^2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a709jlhteulne6o4j363mwap4r24tvwaf1.png)
Now we will bring out perfect squares from radical as:
![(n^3√(15n))/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dllzesnykmrmcnlq6o8gkyahnrk52sedvs.png)
Therefore, simplified form of our given expression would be
and option B is the correct choice.